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The organization of vortex clusters above the buffer layer of turbulent channels
is analysed using direct numerical simulations at friction Reynolds numbers up to
Reτ = 1900. Especial attention is paid to a family of clusters that reach from the
logarithmic layer to the near-wall region below y+ = 20. These tall attached clusters
are markers of structures of the turbulent fluctuating velocity that are more intense
than their background. Their lengths and widths are proportional to their heights ∆y

and grow self-similarly with time after originating at different wall-normal positions
in the logarithmic layer. Their influence on the outer region is measured by the
variation of their volume density with ∆y . That influence depends on the vortex
identification threshold, and becomes independent of the Reynolds number if the
threshold is low enough. The clusters are parts of larger structures of the streamwise
velocity fluctuations whose average geometry is consistent with a cone tangent to the
wall along the streamwise axis. They form groups of a few members within each cone,
with the larger individuals in front of the smaller ones. This behaviour is explained
considering that the streamwise velocity cones are ‘wakes’ left behind by the clusters,
while the clusters themselves are triggered by the wakes left by yet larger clusters in
front of them. The whole process repeats self-similarly in a disorganized version of
the vortex-streak regeneration cycle of the buffer layer, in which the clusters and the
wakes spread linearly under the effect of the background turbulence. These results
characterize for the first time the structural organization of the self-similar range of
the turbulent logarithmic region.

1. Introduction
According to the classical theory (Townsend 1976, chap. 5), turbulent wall flows in

the overlap layer are characterized by a constant flux of kinetic energy from small
scales near the wall to large ones far from it. The intensity of the active wall-normal
motions in that region scales with the friction velocity, and the impermeability of the
wall limits their sizes to scales of the order of the wall distance y, which leads to a
logarithmic dependence of the mean profile with y. That limitation does not apply to
wall-parallel inactive motions, which can reach sizes much larger than y. The validity
of these ideas has lately become increasingly clear, as we will see below, but they
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are based on general physical considerations, and little is known about the coherent
structures that take part in the dynamics of the overlap region.

Vortices are a particularly interesting kind of coherent structure, because their
dynamics and their induced velocity fields can be analysed easily under certain
assumptions. Most of the theoretical work about the role of vortical structures on
the physics of the logarithmic layer is based on the work of Perry & Chong (1982),
which has its roots in Townsend’s (1976, § 5.7) attached eddy model. These authors
conceived turbulent wall flows as forests of self-similar wall-attached vortex loops,
similar to Theodorsen’s (1952) horseshoes, randomly distributed in space. In this
model, the vortex forest contains all the vorticity in the flow and is responsible for
the mean profile and for the velocity fluctuations. Later refinements of the model
also consider the effect of detached small-scale vortices, of attached vortices with
configurations different from a vortex loop, and of inhomogeneities in their spatial
distribution (Perry, Henbest & Chong 1986; Perry & Marusic 1995; Marusic 2001).

While there is a considerable amount of laboratory and numerical data on the
near-wall vortical structures (Robinson 1991a), there is much less information in
the case of the logarithmic layer (100ν/uτ � y � 0.1h, where ν is the kinematic
viscosity of fluid, uτ the friction velocity and h the flow thickness). This is due in part
to the joint requirements of Reynolds numbers high enough to observe an overlap
region, and of resolutions fine enough to represent the vortices. Another reason is the
difficulty of employing systematic procedures in the analysis of vortices, well-defined
mathematically and free from visualization artefacts.

Head & Bandyopadhyay (1981) performed smoke visualizations of boundary layers
at Reynolds numbers based on the momentum thickness up to Reθ = 10 000. They
proposed that the boundary layer is composed of vortex loops inclined at 45◦ to the
wall, sometimes arranged to form larger structures inclined at smaller angles to the
surface, and extending across the layer. Their main conclusions were confirmed by
the particle image velocimetry (PIV) experiments performed by Adrian, Meinhart &
Tomkins (2000) and by Tomkins & Adrian (2003) in boundary layers up to Reθ = 7705,
and by Christensen & Adrian (2001) in channels at friction Reynolds numbers up
to Reτ =1734. Adrian et al. (2000) put forward a model based on packets of hairpin
vortices, aligned in the streamwise direction, which evolve from initial disturbances in
the near-wall region. They suggested that the packets conserve their coherence as they
age because all their members move at the same speed, and that the induced flow of
each packet comes from the cooperative effect of several hairpins. Adrian et al. (2000)
pointed out that different packets may also align in front of each other, inducing
larger zones of low streamwise velocity, which they observed. These structures look
like ramps aligned with the stream and inclined at an average angle of 12◦ to the
wall. Christensen & Adrian (2001) gave statistical evidence of the existence of ramps,
and of their association with trains of spanwise vortices inclined at 13◦–14◦ to the
wall. Tomkins & Adrian (2003) documented the model in wall-parallel planes, and
proposed a mechanism of scale growth in the spanwise direction based on mergings
of vortex packets. Ganapathisubramani, Longmire & Marusic (2003) carried out a
similar study based on stereo PIV in a boundary layer at Reθ =2500. They showed
that structures with signatures of hairpin packets contain an important fraction of
the Reynolds shear stresses, that they can reach lengths of around twice the thickness
of the layer, and that their streamwise coherence breaks down beyond the logarithmic
region.

The evidence from these laboratory experiments offers a simple connection between
the hairpin packet paradigm and the classical theory. However, the observations are
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constrained to two dimensions, and use fields of view which are too short to observe
the large-scale organization of the overlap region. In addition, recent results suggest
that it could be too soon to abandon other, less organized, interpretations. Del
Álamo et al. (2004) found that in the logarithmic regions of turbulent channels up
to Reτ =1900, the spectral widths of the largest scales of the streamwise velocity are
proportional to the square root of their lengths. Jiménez, Flores & Garcı́a-Villalba
(2001) suggested that this behaviour can be explained assuming that the associated
structures are the wakes left by compact structures of the wall-normal velocity, which
spread under the action of the incoherent background turbulence. Del Álamo et al.
(2004) showed that streamwise laboratory spectra in pipes (Perry et al. 1986) and in
boundary layers (Hites 1997) at higher Reynolds numbers are also consistent with
this idea. Jiménez et al. (2004) used a similar model to explain the behaviour of the
streamwise-velocity spectrum in the near-wall region.

The objective of this paper is to study the organization of clusters of intense vor-
tices in turbulent channels, especially above the buffer layer, and to examine their
relation with the structures of the velocity field. For this purpose we will use data
from the numerical experiments of del Álamo & Jiménez (2003) and of del Álamo
et al. (2004), whose Reynolds numbers, 180<Reτ < 1900, are comparable to those
of most related laboratory experiments. Their numerical resolution is high enough to
represent accurately small-scale regions of intense vorticity, and their computational
boxes are large enough to capture the largest scales in the logarithmic and outer
regions. An especial effort has been made to analyse the data in a well-defined
systematic manner, and to offer statistical evidence as free as possible from subjective
interpretations.

The present results indicate that the population of vortices in the logarithmic
region breaks naturally into a wall-attached and a wall-detached family, similar to
those in Perry et al. (1986). We will show that the former are actually indicators
of the compact wall-normal motions that Jiménez et al. (2001) postulated to force
large-scale streamwise velocity fluctuations, and that their sizes are similar to those of
the structures with signatures of hairpin packets identified by Ganapathisubramani
et al. (2003) and by Tomkins & Adrian (2003) at similar Reynolds numbers. We
will present evidence that these tall attached clusters are self-similar, with lengths
and widths proportional to their heights, and that they grow self-similarly with time
from different wall-normal positions within the logarithmic layer. We will show that
the influence of the tall attached clusters on the outer region depends on the vortex
identification threshold, but that it is possible to choose a threshold for which that
influence is roughly independent of the wall distance and of the Reynolds number.

We will see that the average velocity field conditioned to the presence of tall
attached clusters reveals conical structures of streamwise velocity fluctuations, much
larger than the conditioning objects. We will show that the clusters are arranged inside
each cone in ascending order of size, consistent with the streamwise velocity structures
being ‘wakes’ left behind the clusters, and with the clusters themselves being triggered
by the upstream wakes left by yet larger clusters in front of them. The spreading of
the conditional wakes will be explained to result from the competing linear effects of
the advection by the mean profile and of the dispersion by the background turbulence,
as suggested by Jiménez, del Álamo & Flores (2004) and by del Álamo et al. (2004).
This model is described in more detail in del Álamo & Jiménez (2006) and del Álamo
et al. (2006).

The paper is organized as follows. The numerical database is briefly described in
§ 2, with emphasis on its spatial resolution. In § 3, we explain the procedure employed
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Case Line Reτ Lx/h Lz/h �x+ �z+ Ny NF NC

L180 185 12π 4π 14 6.8 97 106 3.8 × 105

L550 547 8π 4π 13 6.7 257 23 9.4 × 105

L950 934 8π 3π 11 5.7 385 18 2.4 × 106

S950 ◦ 964 π π/2 12 5.8 385 111 3.1 × 105

S1900 1901 π π/2 12 5.8 769 63 9.8 × 105

Table 1. Parameters of the experiments. Lx and Lz are the streamwise and spanwise dimensions
of the numerical box and h is the channel half-width. �x and �z are the resolutions after
dealiasing. Ny is the number of Chebychev polynomials. NF is the number of fields used to
accumulate statistics and NC is the number of clusters extracted for the reference value of the
identification threshold.

to identify vortices and to classify their clusters. The properties of the clusters, and
their relation to the large-scale organization of the velocity field in the logarithmic
region, are presented in § 4. Finally, conclusions are given in § 5.

2. The numerical experiments

We use data from the channel-flow simulations of del Álamo & Jiménez (2003)
and of del Álamo et al. (2004). The numerical code integrates the Navier–Stokes
equations in the form of evolution problems for the wall-normal vorticity ωy and for
the Laplacian of the wall-normal velocity ∇2v, as in Kim, Moin & Moser (1987). The
spatial discretization uses dealiased Fourier expansions in the wall-parallel planes, and
Chebychev polynomials in y. The streamwise and spanwise coordinates and velocity
components are, respectively, x, z and u, w. The parameters of the simulations are
summarized in table 1.

The characteristics of the present experiments with respect to the large scales of
the outer region were documented in previous works (del Álamo & Jiménez 2003;
del Álamo et al. 2004). Here we pay more attention to their spatial resolution, which
is crucial to represent the vortices accurately. It is intermediate between those used
by Moser, Kim & Mansour (1999) for their cases at Reτ = 180 and Reτ =590, and
compares favourably with those used in most related numerical and laboratory studies
(Blackburn, Mansour & Cantwell 1996; Adrian et al. 2000; Ganapathisubramani et al.
2003; Tanahashi et al. 2003, 2004).

In our simulations, the most under-resolved vorticity component is the spanwise vor-
ticity in the streamwise direction. Figure 1 displays the longitudinal enstrophy spectral
densities of this vorticity component, φωz

(λx, y) = kx

∫
ω̂zω̂∗

z dkz, from the present
experiments, where ω̂z is the Fourier coefficient of ωz, and k = 2π/λ is the wavenumber
corresponding to a wavelength λ. The overbar will be used in this paper for averaging
over the relevant homogeneous directions, in this case over time. The insufficient
resolution of the smallest scales of ωz produces spurious accumulations of enstrophy
in the short-wavelength tails of φωz

, which is revealed by the ‘hooks’ of the curves in
figures 1(a) and 1(b). Other enstrophy spectral densities show that the most under-
resolved vorticity component in the spanwise direction is ωy . The under-resolved
enstrophies contained in the ‘hooks’, defined as the integrals of the spectra from their
smallest wavelength to the location of their minima, are less than 3.1 % of ω′2

z in x and

2.3 % of ω′2
y in z, at all wall distances and for all the simulations. Figure 1(b) shows
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Figure 1. Streamwise enstrophy spectral densities φωz
of the spanwise vorticity. (a) Repre-

sented as functions of the streamwise wavelength λx and expressed in wall units, at y+ = 50.

(b) Represented as functions of λx and of y and normalized with ω′2
z (y). The contours by pairs

from inside to outside are isolines of 1/3 and 2/3 of the maximum value from case L950. The
vertical lines mark the lengths of the boxes for cases S950 and S1900. Lines and symbols as in
table 1.

that the streamwise resolution of ωz is worst at y+ ≈ 80. The spanwise resolution of
ωy is worst at y+ ≈ 40.

Although the small numerical box of case S950 interferes with the large velocity
structures of the outer region (del Álamo et al. 2004), the enstrophy-containing scales
are not affected by the finite size of the box, as shown by the agreement between cases
S950 and L950 in figure 1. The same is expected to happen for case S1900, whose
box is approximately twice as large in wall units as that of S950.

The time step of the simulations was chosen to keep the CFL number at 0.5.
However, because of a bug discovered in the code late in the post-processing phase,
about 1 % of the points in the neighbourhood of y+ = 20 probably ran at CFLs which
might have reached about unity in the worst case of the highest Reynolds number.
The stability limit of the Runge–Kutta is about CFL = 4 in that region. The cases
S1900 and L950 were run for an extra half washout with the correct CFL limit. No
change was observed in the statistics.

3. Vortex identification and classification
This section describes the procedures employed to identify and to classify vortex

clusters in the present flows. Our method is based on the discriminant criterion of
Chong, Perry & Cantwell (1990), which was first applied using constant non-zero
thresholds to study wall turbulence structure by Blackburn et al. (1996) and Chong
et al. (1998). Here, we introduce a non-uniform threshold that allows us to compare
systematically data from different wall distances. We also derive a way to compute the
lowest possible threshold that allows the identification of individual vortices. In § 3.1,
the vortices extracted with the present method are characterized in terms of their radii
and azimuthal velocities, which are compared to similar data available in the literature.

According to Chong et al. (1990), a vortex core is a region where the velocity
gradient tensor ∇u is dominated by its rotational part. Expressed in terms of the
discriminant of ∇u, this condition is D > 0. It is beyond the scope of this paper to
compare carefully the vortex eduction methods available in the literature, and the
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Figure 2. Standard deviation (D′2)1/2 of the discriminant of the velocity gradient tensor,
normalized in inner units and represented as a function of the wall distance y. Lines and
symbols as in table 1.

reader is referred to the paper of Cucitore, Quadrio & Baron (1999) for a detailed
description of the most popular ones. Chakraborty, Balachandar & Adrian (2005)
showed that all these methods are approximately equivalent, which strongly suggests
that the choice of a particular criterion does not affect the present results.

Nevertheless, the dependence of the identification methods on their thresholds
becomes troublesome for wall-bounded turbulence, owing to the inhomogeneity of
the flow in the wall-normal direction. It complicates the comparison of data from
different wall distances when a uniform threshold is used. When the threshold is
chosen to visualize properly the vortices of the near-wall layer of the present channels,
very few of them are observed in the outer region. Conversely, when the threshold
is lowered to visualize the vortices of the outer layer, the near-wall region becomes
confusingly cluttered with vortex tubes. This behaviour, which agrees in general with
the observations of Blackburn et al. (1996), worsens with increasing Reynolds number.
Nagaosa & Handler (2003) found similar effects using the Q criterion of Hunt, Wray
& Moin (1988) with uniform thresholds, but they pointed out that the p.d.f. of the
second invariant normalized with its standard deviation, Q/(Q′2)1/2, is homogeneous
everywhere except in the viscous sublayer. Based on this result, they proposed that
the threshold should vary with wall distance as (Q′2)1/2. We will show below that the
same is roughly true for the D criterion.

Following this argument we consider that a point x belongs to a vortex if

D(x) > αD′2(y)
1/2

, (3.1)

where α is the actual thresholding parameter and (D′2)1/2 is the standard deviation of
D over wall-parallel planes, shown in figure 2 for the present channels. This procedure
palliates the problem of inhomogeneity, and yields a vortex volume fraction which
depends on y much less than the one obtained using a uniform threshold. This is shown
in figure 3(a), which displays the relative volume Vr occupied by the points satisfying
(3.1) as a function of α and of the wall distance. The variation of Vr for a given
threshold, from its peak at y+ ≈ 30 to the centre of the channel is negligible compared

to the variation of (D′2)1/2 in figure 2. While the latter varies by a factor O(103–105)
across the channel, depending on the Reynolds number, the former changes by less
than 4. Thus, in the representation of figure 3(a), using a uniform threshold would
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Figure 3. (a) Relative volume Vr occupied by the points satisfying criterion (3.1), represented
as a function of the threshold α and of the wall distance y. The contours are from right to left
10−3( × 10)10−1. The shaded region marks the location of the percolation crisis. (b) Volume
Vmax of the largest cluster normalized with the overall volume V occupied by all the clusters,
represented as a function of the threshold α. Lines and symbols as in table 1.

be equivalent to increasing α by a factor of up to 105 from the near-wall region
to the channel centre. That is the range of the horizontal axis in the figure. Notice
also that the collapse of the contours from the different channels indicates that the
fraction of volume occupied by the vortices identified following (3.1) depends little
on the Reynolds number.

Yet, the present identification method depends on the parameter α. In principle,
we would like to use the theoretical criterion D > 0, but it is known that the zero
threshold leads to confusing results in which all the vortices merge into a few complex
objects (Blackburn et al. 1996). Here we present a way to find the lowest practical
threshold for which the vortices can still be identified individually. For a given α,
each set of connected points satisfying the criterion (3.1) is merged and classified as
an individual object. Connectivity is defined by the six orthogonal nearest neighbours
of each grid point.

Figure 3(b) represents the ratio between the volume of the largest cluster Vmax and
the overall volume V occupied by the clusters. When α ≈ 1, only a few small objects
are identified. With decreasing α, new clusters appear while others coalesce, and the
variation of Vmax/V with α is the result of the trade-off between the two processes.
Figure 3(b) shows that they are balanced above α ≈ 10−2, so that Vmax/V remains
roughly constant while the number of clusters increases. Below that critical value of α,
few new clusters are identified and the existing ones keep merging until only a single
large, sponge-looking object remains, yielding Vmax = V . Moisy & Jiménez (2004)
observed a similar behaviour in isotropic turbulence using the modulus of vorticity
as the threshold. They described it using the analogy of a percolation transition in
which, given the connectivity rules, an infinite cluster appears above a given volume
density. The phenomenon of percolation is common to many physical processes in
which a property communicates through a randomly distributed medium (Stauffer
1985). Here, it imposes a natural limitation on α which is intrinsic to the geometrical
configuration of the vortices in the flow.

The percolation threshold, defined as the value of α for which the slope of Vmax/V

is maximum, occurs at αc ≈ 0.008 in the present channels regardless of the Reynolds
number. Such a low value of αc should not be surprising considering that D is a
sixth-order function of the velocity gradient. The threshold that has been used in this
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Figure 4. (a) Average 1/e vortex radius R non-dimensionalized with the local Kolmogorov
scale η, and represented as a function of the wall distance y. �, Reτ = 800 channel (Tanahashi
et al. 2003, 2004). (b) Average maximum azimuthal velocity vθ of the vortices normalized with
the local turbulent intensity q , and represented as a function of y. The value of the threshold
used in (3.1) is α ≈ 2.5αc . Lines and symbols as in table 1. The shaded patches cover the
maximum scatter of R and vθ in isotropic turbulence up to Reλ = 170 (Jiménez & Wray 1998).

paper as a reference is α = 0.02 ≈ 2.5αc, which lies slightly above the beginning of the
percolation transition in figure 3(b). The influence of this choice will be considered
later.

Because of the high cost of the clustering algorithm at low α we have used sub-
boxes of size l+x × l+y × l+z ≈ 2000 × 2Reτ × 1000 instead of the full fields to produce
figure 3(b). The location of the percolation crisis should not be affected by this, since
the volume occupied by the largest cluster at α = αc is less than 10 % of the volume
of the sub-box in all the cases. The full boxes have been employed for the rest of the
results in this paper. The number of fields that has been used from each simulation,
and the corresponding number of clusters that have been identified at α ≈ 2.5αc, are
indicated in table 1. According to our experience, these are enough to provide good
convergence for the statistics that are presented in the following sections.

3.1. Properties of individual vortices

For simplicity, the properties of the vortex cores extracted using the above procedure
have been studied analysing sections of spanwise vortices in (x, y)-planes. These
sections are roughly representative of the whole vortex population everywhere except
in the buffer layer, where the flow is most anisotropic. They are identified as sets of
connected points satisfying (3.1) and whose vorticity vector is inclined less than 30◦

to the z-direction. The influence of the threshold on the clustering of these objects
is similar to the three-dimensional case, but in the (x, y)-planes the percolation crisis
occurs at α ≈ 10−4.

We characterize the spanwise vortex sections by fitting their vorticity distribution
to that of an elliptical Gaussian vortex, as in Jiménez et al. (1993). The principal
semi-axes a and b of each vortex, and its 1/e radius, R = (ab)1/2, are obtained from
the tensor of inertia of the local vorticity distribution, taking into account its angle
with the (x, y)-plane. The maximum azimuthal velocity given by the Gaussian model
is vθ =0.203Γ/(a + b), where Γ is the circulation obtained from the integral of ωz

inside the vortex section.
Figures 4(a) and 4(b) show that R and vθ depend little on Reτ and y, when norm-

alized with the Kolmogorov scale η and with the r.m.s. turbulent intensity
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q =[(u′2+v′2+w′2)/3]1/2. Their numerical values agree reasonably with those obtained
by Jiménez & Wray (1998) in isotropic turbulence up to Reλ = 170. The present vortices
are, however, about 20 % thinner and twice as strong as those extracted by Tanahashi
et al. (2003, 2004) in channels up to Reτ =800. This can be explained considering that
the criterion (3.1) detects only the most intense vortices, while that used by Tanahashi
et al. (2003, 2004), not requiring a threshold, does not discriminate between weak and
strong objects. Consistently, the fraction of volume occupied by the vortices in the
present channels, 2–3 % for α ≈ 2.5αc, is much lower than the 39 % obtained in iso-
tropic turbulence by (Tanahashi et al. 1997), using the method of Tanahashi et al.
(2003, 2004). The same conclusion is drawn comparing results from isotropic turbu-
lence at similar Reynolds numbers. The azimuthal velocities reported by Jiménez &
Wray (1988) for the most intense vortices occupying 1 % of the flow volume, are
nearly twice as high as those obtained by Kida, Goto & Makihara (2002) using
Q > 0, which yields a volume fraction of 40 %.

4. Vortex clusters
This section studies the properties of the vortex clusters found in the logarithmic

and outer regions of our channels. In § 4.1, we will show that their population is
separated into two families. The first one is composed of small individuals that are
detached from the wall and the second one is formed by taller objects that reach the
near-wall region.

We will focus on these tall attached clusters in § 4.2. They form a self-similar range
that links the small scales near the wall to the larger ones far from it. In § 4.2.1, we will
see that the lengths and widths of these objects are proportional to the wall distance
of their centres, and comparable to the local integral scale of the flow, u′3/ε. The
influence of the tall attached clusters on the outer region is analysed in § 4.2.2. We will
see that it depends on the vortex identification threshold and becomes independent
of the Reynolds number for low-enough thresholds.

The organization of the turbulent velocity fluctuations associated to the tall
attached clusters is studied in § 4.2.3. The results will indicate that, while the average
structure of these objects coincides with a large-scale hairpin eddy, their instantaneous
configuration is very complex.

In § 4.2.4, we will see that the average velocity field conditioned to the presence of
the tall attached clusters shows very large u-structures, whose average geometry is
consistent with a cone tangent to the wall along the x-axis. We will interpret these
structures as ‘wakes’ that the clusters leave behind them as they move with the flow.
The spreading of the wakes will be shown to agree with a linear advection–diffusion
model in which the diffusion is produced by the incoherent background turbulence.
By analysing the lifetimes of the clusters and the lengths of the conditional wakes,
we conclude that the clusters are triggered by older wakes in front of them, and that
hence the clusters and the wakes are involved in a cycle of mutual regeneration.

Finally, the properties of the detached clusters will be presented in § 4.3.

4.1. Attached and detached clusters

Figure 5 shows the volume pV contained in clusters whose minimum and maximum
wall distances, measured from the wall closest to their centres, are ymin and ymax. By
definition ymax > ymin, so that pV can only be non-zero above ymax = ymin. For a spatially
homogeneous distribution of vortex clusters pV would only depend on ymax − ymin,
which is not the case for the present channels. In particular, figure 5 reveals that pV
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Figure 5. Volume distribution pV of the clusters as a function of their minimum ymin and
maximum ymax wall distances. Case L550. The line contours come from α ≈ 2.5αc and contain
20, 40, 60 and 80 % of the data. The shaded contour comes from α ≈ αc and contains 40 % of
the data. The vertical dashed line is y+

min = 20. The diagonal dashed line is ymax = ymin.

peaks in the buffer layer in agreement with figure 3(a), and its shape suggests that the
population of clusters may be divided into two families according to their wall-normal
position and to their height. The first family corresponds to the inclined band that
occupies most of the area of figure 5. It is formed by vortex packets that reside far
from the wall, and is almost spatially homogeneous according to the argument above.
We call them wall-detached clusters. The second family is the narrow vertical band
to the left of the line representing y+

min ≈ 20. It consists of clusters which are tall, but
which reach into the near-wall region. We call them wall-attached clusters. They are
important, even if few, because of their large sizes.

The data in figure 5 come from case L550 to facilitate the visualization of the narrow
band corresponding to the tall attached clusters, but similar results are obtained for
the remaining Reynolds numbers. The general structure of pV does not vary with the
threshold for α � αc. When α decreases, new small clusters appear near ymin = ymax,
and compensate the migration away from that region caused by the merging of some
of the previously existing objects. As a result, the volume occupied by the clusters
increases everywhere in the (ymin, ymax)-plane and pV keeps its shape approximately.
An example is included in figure 5. However, when α crosses the percolation transition,
cluster aggregation becomes dominant and the whole distribution accumulates rapidly
at (ymin, ymax) ≈ (0, 2h).

The vortex clusters of several realizations from each of the present channels have
been visualized plotting the isosurfaces D = α[D′2(y)]1/2, consistent with the identifica-
tion criterion (3.1). In agreement with the discussion in § 3, the resulting vortex fields
are more densely populated in the logarithmic and outer regions than those obtained
by Blackburn et al. (1996) and by Chong et al. (1998) using isosurfaces of uniform
D. Because of this, the visualizations of full fields are extremely cluttered, and it is
difficult to extract conclusions from them.

Considering individual objects is easier and can be done systematically, since the
clusters have been isolated and classified. Proceeding in this way it is found that
the wall-detached clusters cover a wide spectrum of shapes, which are reminiscent of
the worms of isotropic turbulence. They range from single vortex tubes to complex
bundles of tangled filaments. Figure 6(a) is an example of medium complexity, taken
from an snapshot of case S1900 (for comparison see figure 6 in Moisy & Jiménez 2004).
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Figure 6. Three-dimensional clusters from case S1900, α ≈ 2.5αc . (a) Representative
detached cluster. (b) Representative tall attached cluster.

Most of the wall-attached clusters turn out to be single near-wall quasi-streamwise
vortices, but there is an appreciable number of ‘tall’, more complex clusters that
penetrate in the logarithmic region, in agreement with figure 5. The former have
been studied thoroughly and are known to generate velocity fluctuations at all length
scales in the buffer layer (Robinson 1991a; Jiménez et al. 2004). In this paper, we pay
especial attention to the latter.

Little can be said in general about the shape of the tall attached clusters, except that
they are usually inclined upward and along the streamwise direction. They sometimes
contain one or several more-or-less-clear specimens of the vortex loops that have
been discussed since Theodorsen (1952) by many workers (Head & Bandyopadhyay
1981; Perry & Chong 1982; Acarlar & Smith 1987; Adrian et al. 2000), and that were
observed previously in diverse numerically simulated turbulent wall flows (Moin &
Kim 1985; Robinson 1991b). That is the case of figure 6(b), which has been extracted
from the same flow realization as figure 6(a). Nevertheless, there are many other
configurations, more complex and less eye-catching than vortex loops or than other
kinds of simple organized structures. Those configurations appear more often in the
larger clusters. They cannot be classified visually and have to be described statistically.

To compute statistics separately for detached clusters, attached clusters and tall
attached clusters, we must define these groups mathematically. Based on figure 5,
we will consider that those clusters with y+

min � 20 are detached and that those with
y+

min < 20 are attached. Among the latter, those with y+
max > 100 will be tall attached

clusters.

4.2. Tall attached clusters

4.2.1. Scaling

The scaling of the tall attached clusters has been analysed by inscribing each of
them into a parallelepipedal box aligned with the Cartesian grid, and by comparing
the dimensions ∆x , ∆z and ∆y of the boxes with the distances yc from their centres to
the wall. Figures 7(a) and 7(b) display the joint p.d.f.s of the logarithms of the wall-
parallel dimensions of the boxes and of yc. These magnitudes measure the number
of clusters per unit area of the logarithmic representation of the figure. Since we are
more interested in the tall attached clusters than in the buffer-layer ones, only those
objects whose vortex volume is larger than 303 wall units have been considered. The
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Figure 7. Probability density functions of the logarithms of the size ∆ of the attached clusters,
and of the wall distances yc of their centres. The lines and symbols of table 1 have been obtained
using α ≈ 2.5αc in (3.1); �, case S1900, α ≈ αc . The iso-probability contours contain 98 % of
the data; the shaded contours are the cospectrum φuv and represent 1/20 and 1/5 of its
maximum value; we have used the correspondence λ≈ ∆ and yc ≈ y/2. (a) p(log ∆x, log yc)
and φuv(λx, y); the solid straight line is ∆x = 6yc . (b) p(log ∆z, log yc) and φuv(λz, y); the solid
straight line is ∆z = 3yc .

p.d.f.s are organized along

∆x ≈ 6yc, ∆z ≈ 3yc, (4.1)

providing direct evidence of the self-similarity of the lengths and widths of the tall
attached clusters with respect to the wall distances of their centres. They support the
existence of the hierarchy of scales postulated by Perry & Chong (1982) and which is
the essence of developed turbulence. Note that since ymax � ymin for the tall attached
clusters, yc ≈ ∆y/2, and (4.1) also implies that the lengths and widths of these objects
are proportional to ∆y . Figures 7(a) and 7(b) show that the same scalings are obtained
for other values of the identification threshold.

The shaded contours in figure 7(a) are the spectral densities of the shear Reynolds
stress, φuv(λx, y) = kxy

∫
Re(ûv̂∗) dkz, from case S1900, and those in figure 7(b) are

φuv(λz, y). These contours show the wavelengths and wall distances associated to
uv-containing motions. To compare φuv with the p.d.f.s of the sizes of the attached
clusters, it is convenient to use the correspondence y ≈ yc/2. The reason is that
φuv(λ, y) contains contributions from all the attached clusters that intercept the wall
distance y, which are those with yc > y/2. Since, as we will see, the number of
tall attached clusters decreases rapidly with yc, their effect on the uv-cospectrum is
dominated by the lowest of those clusters, with yc = y/2. The p.d.f.s of figures 7(a)
and 7(b) agree reasonably well with φuv , suggesting a relation between the tall
attached clusters and the organization of the velocity field in the overlap region,
which will be explored below in more detail. The fact that the agreement is not
perfect should not be surprising, considering that the correspondence between yc and
y/2 is only approximate, and that sizes and spectral wavelengths are proportional,
but not identical (Jiménez et al. 2004).

The coincidence of the sizes of the clusters with the scales of the Reynolds stresses
suggests that some properties of these objects, such as their size, may be dominated
by their associated velocity structures instead of by their constituent vortices. This
possibility has been tested by analysing the clusters in low-pass filtered fields, in
which the individual vortices are smoothed, and what remains is only the integrated
circulation over fairly large scales. In each direction of the original grid, a box filter of
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Filter Symbol δ+
x δ+

z δ+
y αc NF NC

F1 � 48 24 20 0.06 42 2.4 × 105

F2 � 96 48 40 0.12 42 6.4 × 104

F3 � 192 96 40 0.24 47 2.2 × 104

Table 2. Parameters of the box filters used in case S1900. δx , δz and δy are the filter widths.
αc is the percolation value of the identification threshold. NF is the number of fields used to
accumulate statistics and NC is the number of clusters that have been identified at α ≈ 2.5αc .
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Figure 8. Average widths ∆z of the attached-cluster boxes as functions of the distance yc

from their centres to the wall. Case S1900, α ≈ 2.5αc , lines and symbols as in tables 1 and 2.
, ∆z = 3yc . The open triangles are the widths of the ejections in laboratory open channels

(Nakagawa & Nezu 1981); �, Reτ = 318; �, Reτ = 696. The rest of the data are the widths of
hairpin packet signatures in laboratory boundary layers; �, Reθ = 2500 (Ganapathisubramani
et al. 2003); �, Reθ =7705 (Tomkins & Adrian 2003).

uniform width δ and half-window overlap is applied to ∇u, and the result is sampled
on a grid of size δ/2, on which D is calculated. The discriminant of the filtered
fields is processed as described in § 3 to identify and classify vortex clusters. Figure 5
indicates that a wall-normal resolution finer than a few tens of wall units is required
to distinguish the attached clusters from the detached ones, which introduces an upper
bound on the wall-normal width of the filter. A certain degree of grid isotropy has
to be preserved, which also limits the filter widths in the wall-parallel directions. We
have used the three filters described in table 2.

The average widths ∆z of the attached clusters from the filtered fields of case S1900
have been represented in figure 8. They agree with those coming from the fully
resolved case for ∆z � 2δz, whereas the narrower clusters are affected by the filter.
Similar results are obtained for the average lengths of the clusters, suggesting that
the self-similar scaling (4.1) is determined by the velocity eddies that accompany
the clusters, instead of by their fine-scale vortices. This offers an explanation for the
agreement of the sizes of the present clusters and those of the hairpin packet signatures
of laboratory experiments, which are usually obtained from measurements at relatively
coarse resolution. The laboratory results have been represented in figure 8 using the
relation yc = y/2, because they are taken at fixed y. The agreement is especially good
for the widths of Ganapathisubramani et al. (2003) and of Tomkins & Adrian (2003),
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Figure 9. (a) Densities ns of attached clusters represented as functions of their height, ∆y .
The vertical arrows indicate the half-widths of the two lowest-Reynolds-number channels.

(b) Root mean squares v′21/2+
of the wall-normal velocity in the (x, z)-planes bisecting boxes

of the attached clusters, represented as functions of ∆y . The threshold used in (3.1) is α ≈ 2.5αc .
Lines and symbols as in tables 1 and 2.

which were measured directly on instantaneous and conditionally averaged hairpin
packet signatures. Nakagawa & Nezu (1981) assumed a log-normal distribution for
∆z, and fitted it to their previous observations (Nakagawa & Nezu 1977) and to
the short-separation behaviour of the spanwise auto-correlation function of u. Their
results show the same linear dependence on y as the rest of the data in figure 8,
but they are approximately twice as wide. This discrepancy is probably due to the
different analytical procedures employed.

4.2.2. Maximum heights

An interesting question is whether the velocity structures that we have associated
with the tall attached clusters are features of the whole outer region, or whether
they just appear in the lower edge of the logarithmic layer. Zagarola & Smits (1998)
observed that the properties of the mean profile in the overlap region of their very
high-Reynolds-number pipe flow change around y+ = 500, which could imply that
some buffer-layer phenomena persist to that height and become negligible for most
of the logarithmic layer at high enough Reτ . However, some of the signatures of
hairpin packets observed in other laboratory experiments at Reτ of the order of a few
thousands conserve their spatial coherence across the whole overlap region (Head &
Bandyopadhyay 1981; Adrian et al. 2000). The presence of attached vortex loops in
the outer region of numerically simulated wall flows at Reτ = O(100) has often been
reported (Moin & Kim 1985; Robinson 1991b; Chong et al. 1998). At the limited
Reynolds numbers of both numerical and laboratory experiments, it is difficult to
decide from qualitative observations how the distribution of attached clusters will
evolve as Reτ increases. Here we try to shed some light on that question by studying
the distribution of the cluster heights.

Figure 9(a) displays the densities of attached clusters per unit height ∆y , and per
unit wall-parallel area, ns = N(∆y)/(LxLz), where N is the histogram of ∆y . These
magnitudes peak in the buffer layer owing to the contribution of the dense population
of vortices in that region, but here we focus on their tails at high ∆y . Since ∆y ≈ 2yc

for the tall attached clusters, those tails are similar to the integrals of the p.d.f.s in
figures 7(a) and 7(b) along the corresponding wall-parallel direction, but here we are
representing absolute cluster numbers, not normalized p.d.f.s.
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The data from the low-pass filtered fields of case S1900, also included in figure 9(a),
coincide with the fully resolved data above ∆y ≈ 3δz, and the same happens when the
filters are applied to the rest of the present flows. This result suggests that ns also
measures the volume density of tall attached velocity eddies, because the number of
identified objects does not change even when the vortices that constitute the clusters
are progressively smoothed out by coarsening the filter. It also suggests that the tails
of ns at high ∆y are not contaminated by artefacts of the identification method or of
the clustering algorithm at scales smaller than the widths of the filters.

The influence of the clusters on the outer region, and hence that of their associated
velocity structures, can be measured by studying the variation with Reτ of their
contribution to the Reynolds stresses at constant y/h. This is equivalent to analysing
the fraction of the area S covered by them in the wall-parallel plane, Fs = S/(LxLz),
because their associated turbulent intensities scale on average with uτ and depend
little on ∆y , as shown in figure 9(b). The scalings (4.1) imply that ∆x∆z ≈ 4.5∆2

y , so

Fs(y
+) ∼

∫ Reτ

y+

∆2
yn

+
s (∆y) d∆y. (4.2)

Notice that Fs also indicates the relative volume occupied by the cluster boxes at a
given wall distance. Assuming that n+

s (∆+
y ) ∼ (∆+

y )β with β 	= −3, we have

Fs ∼ Reβ+3
τ [1 − (y/h)β+3]/(β + 3). (4.3)

Only if ns decays faster than ∆−3
y , does the contribution of the attached clusters to the

Reynolds stresses decrease with Reτ for constant y/h. For the limiting value β = −3,
the integral in (4.2) yields Fs ∼ log(h/y) and the influence of the attached clusters
on the outer region becomes independent of the Reynolds number. In that case, the
volume density of these objects is self-similar and scales both in wall and in outer
units.

In the present flows, each value of the identification threshold corresponds to a set
of clusters, whose influence on the outer region is measured by its associated decay
exponent, β(α). Consistent with criterion (3.1), that influence should increase with
decreasing the threshold, because the set of clusters extracted for a given threshold α0

is a subset of those obtained for α >α0. This behaviour can be observed in figure 10,
which shows the average logarithmic slope of ns above ∆+

y =100. This magnitude is
a reasonable approximation to the decay exponent β , since the slopes of the curves
in figure 9(a) are roughly uniform above that level. Figure 10 indicates that β is
only a function of α/αc, both for the full fields at the three Reynolds numbers and
for the coarsest filter of case S1900. In the filtered case, β has been computed for
∆+

y > 300 because the filter size interferes with the clusters below that level. The same
results are obtained for the remaining combinations of present filters and Reynolds
numbers, suggesting that the conclusions inferred by comparing fully resolved data
with filtered data in figure 9(a) apply regardless of the identification threshold.

Figure 10 shows that the decay exponent of ns reaches the limit value β = −3 around
the percolation threshold. If α is decreased below that level, ns develops a ‘bump’
around ∆y =h, but its slope in the logarithmic region does not vary appreciably. Thus,
the maximal set of tall attached clusters observed in the present flows has β = −3, and
its influence on the outer region is independent of the Reynolds number according to
the discussion above. This maximal set is actually the ‘full’ set of wall-attached eddies
because it fills a fraction of volume of order unity in our channels. The computed
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Figure 10. Logarithmic slope β of ns(∆y) as a function of the identification threshold α/αc .
The lines have been plotted to aid the eye and only the symbols correspond to data points.
Lines and symbols as in tables 1 and 2. The shaded area marks the percolated range. The
horizontal line is β = −3.

relative volumes occupied by the tall attached clusters in our channels vary between
0.18 and 0.83 for α ≈ αc.

The saturation of β for α <αc can be explained with the help of (4.3), which
indicates that Fs decreases as a negative power of y for β < −3, but only algebraically
for β > −3. In both cases, the relative volume of the cluster boxes is maximum for
y/h → 0, suggesting that the process of percolation would start near the wall in any
flow realization. Below β = −3, the propagation of percolation away from the wall
is prevented by the rapid decrease with y of the volume occupied by the cluster
boxes, but the same does not happen above that limit. Hence, if the clusters in a given
realization reach β > −3 when the threshold is lowered, they will percolate completely
and become part of the ‘bump’ of ns around ∆y = h that was described above as
indicative of the percolation regime.

The variation of the number of signatures of hairpin packets found by
Ganapathisubramani et al. (2003) between y+ = 92 and y+ = 198 yields β ≈ −3.13,
suggesting that the influence of those packets also reaches the outer region of their
boundary layer (Reτ = 1060). However, these authors hardly observed hairpin packet
signatures at y+ ≈ 500, and concluded that their influence should not remain important
above the logarithmic layer. Figures 7(a) and 7(b) suggest an explanation for this
discrepancy. They show that the sizes of the clusters that intercept y+ = 500 are
comparable to the dimensions of the field of view used by Ganapathisubramani et al.
(2003), L+

x × L+
z ≈ 1300 × 1300, which should affect their feature extraction algorithm.

Besides, using the number of clusters that intercept a given y as a diagnostic of their
influence on the outer region may not be accurate, because the taller clusters are
also larger, and they contribute to the Reynolds stresses more than the smaller ones.
Notice, in fact, that the relative volume occupied by the cluster boxes decays only
logarithmically with y for β = −3, even if the number of clusters that intercept a
given wall distance falls as y−2.

The velocity fluctuations associated with the tall attached clusters are stronger than
their background, and this causes the percolation of their constituent vortices down
to the wall. We have seen in figures 4(a) and 4(b) that the radii of individual vortices
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Figure 11. (a) Probability density functions of the logarithms of the volume Vcore occupied
by the vortices in the attached clusters, and of the cluster height ∆y . The levels represented
contain 50 % and 98 % of the data. The straight dashed line has a logarithmic slope of 2.
(b) Probability density functions of the streamwise rx and wall-normal ry positions of the vortex
points of the tall attached clusters, normalized with the wall distances yc of their centres. The
levels represented contain 33 % and 66 % of the data. The dark patch is a side-view of a
hairpin vortex taken from Haidari & Smith (1994). Lines and symbols as in table 1. The
threshold used in (3.1) is α ≈ 2.5αc .

are proportional to η ∼ (ν3/ε)1/4, and that their azimuthal velocity scales with the
local turbulence intensity q . Assuming that the vortices of the tall attached clusters
have to dissipate the energy flux injected by their associated velocity eddies, we obtain
ε ∼ q3

c /yc, where qc is the intensity of those eddies. The discriminant in those vortices,
D ∼ (qc/η)6, is then expected to be (qc/q)21/2 times higher than in the background.
Accordingly, the percolation threshold for the vortices of the tall attached clusters
would be lower than in the background by the same factor. For the present clusters,
it is indeed true that qc/q ≈ (α/αc)

2/21, which suggests that these vortical structures
are just markers of especially intense eddies at the integral scale, and that they are
identified because of their higher dissipation.

4.2.3. Organization and structure

The scalings in (4.1) imply that the volume ∆x∆y∆z of the boxes that bound the
tall attached clusters grows as ∆3

y . The same is not true for the volume of their

vortex cores, which grows approximately as ∆2
y as shown in the p.d.f.s of figure 11(a).

Although only one box has been used to measure each cluster, the logarithmic slope
of the ridge of those p.d.f.s can be interpreted as a crude fractal dimension of the
attached vortices. Its numerical value of 2 suggests that the vortices are organized
forming surfaces or shells. Such a behaviour is not strange in turbulent flows. For
instance, Jiménez et al. (1993) observed that the worms of isotropic turbulence lie
preferentially in the borders of large-scale velocity eddies.

The self-similarity of the tall attached clusters allows us to study their structure by
looking at the p.d.f. of R = r/yc, where r = x − xc is the position of a vortex point
with respect to the centre of the bounding box, xc. The joint p.d.f. of rx/yc and ry/yc is
shown in figure 11(b), revealing a clear pattern that does not depend on the Reynolds
number for the present channels. Its local-average tilt angle has been computed from
the locus of the streamwise location of the maximum of the p.d.f. at each ry/yc. At
the bottom of the clusters it is about 12◦, which agrees with the inclination of the
streamwise vortices near the wall (Jeong et al. 1997), and increases to reach 90◦ at the
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Figure 12. Quiver plot of the average perturbation velocity (〈u′〉, 〈v〉) conditioned to the tall
attached clusters, represented as a function of rx/yc and ry/yc . The plane shown is rz =0. The
shaded patches are the p.d.f. of the positions of the vortex cores and contain 50 % and 75 %
of the data. The longest arrow is 0.91uτ . The solid contour is 〈u′〉 = 0. Case L950, α ≈ 2.5αc .

top of the clusters. The overall average inclination varies between 42◦ and 46◦ for the
present flows, which is close to the 45◦ proposed by Theodorsen (1952) and reported
by Head & Bandyopadhyay (1981). The most probable shape of the clusters agrees
with that measured by Haidari & Smith (1994) on single vortex loops generated
artificially in a laminar boundary layer, which is included in the figure, and also
with that obtained by Zhou et al. (1999) in a laminar channel with a turbulent-like
profile. Notice, however, that the p.d.f.s in figure 11(b) are widely scattered around
the laminar hairpin, indicating that few if any of the individual clusters have that
shape.

The average velocity field conditioned to the presence of a tall attached cluster is
also consistent with a large-scale vortex loop, although the correspondence is hard to
observe in individual eddies (Moin & Kim 1985; Robinson 1991b, see also § 4.1). This
is shown in figure 12, which displays a vector plot of the average velocity fluctuations
in the (x, y)-plane bisecting the clusters. This conditional average is computed with
respect to the centre of the cluster boxes, and is denoted 〈·〉. For each cluster, the
velocity fluctuations are expressed as functions of the scaled variable R, and added
to the average. For the streamwise component we have

〈u′〉(R) =

NTAC∑
i=1

y3
c,i[ui(Ryc,i + xc,i) − U (ry + yc,i)]

/NTAC∑
i=1

y3
c,i , (4.4)

where NTAC is the number of tall attached clusters, xc,i is the position of the ith
object and ui(x) is the streamwise velocity field associated with it. Notice that (4.4)
weights the fluctuations with the volume of each cluster box and that the mean 〈u′〉
for a given R contains contributions from several wall distances.

The shaded patch in figure 12 is the p.d.f. of the positions of the vortex cores in
the plane of the figure, similar to figure 11(b). A three-dimensional representation is
figure 13. The data in figures 12 and 13 come from case L950 using α ≈ 2.5αc, but
similar results are obtained at the remaining Reynolds numbers, and for the rest of
the thresholds in figure 10. The conditional average in figure 12 shows a well-delimited
region of 〈u′〉 < 0 and 〈v〉 > 0 close to the most probable positions of the vortices.
This averaged ejection is flanked by two inclined counter-rotating vortices, which are
the green objects around the meshed surface that represents the average location of
the clusters in figure 13. They have been represented plotting an isosurface of the
discriminant D〈〉, computed from 〈u′〉. These results support the relation between the
tall attached clusters and the organization of the velocity field in the logarithmic and
outer regions, which was anticipated from figures 7(a) and 7(b).
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4.2.4. The clusters and their wakes

Figures 12 and 13 show a long region of 〈u′〉 < 0 extending downstream of the
cluster, flanked by a pair of counter-rotating vortices. The structure spreads down-
stream from an origin near the cluster, suggesting that it has been created by the
passage of the cluster itself. The idea that large-scale u-fluctuations can be modelled
as the wakes of compact v-structures was already proposed by del Álamo et al. (2004)
to explain the scaling of the u-spectrum in the logarithmic region, while Jiménez et al.
(2004) showed that it explains many features of the streamwise velocity streaks of
the buffer layer. The model also explains the qualitative features of figures 12 and
13. Assume that the cluster moves at a speed equal to the average of the mean
velocity profile inside its vortex points. The flow closer to the wall is slower, and
the wake appears towards the left-hand side. Above the ‘centre of gravity’ of the
cluster, the mean flow is faster, and the wake moves towards the right-hand side (i.e.
downstream). Note that the term ‘wake’ should be understood here in the sense of
the structure created by a jet in a crossflow (Fric & Roshko 1994), which it resembles.
The perturbation vorticity originates from the redistribution of the ambient shear,
rather than from the interaction with the surface of a non-existent solid object.

Appealing as this model may be, we will now show that it can at most be used
to explain the short upstream part of the u-structures in figures 12 and 13, because
the clusters do not live long enough for their wakes to grow to the lengths observed
downstream. Even so, for lack of a better notation and because of the slightly more
complicated causal relationship discussed below, we will continue to refer to the
perturbations in u associated with the clusters as their ‘wakes’.

The full analysis of the model would take us beyond the scope of the present paper,
and it is left for other publications (del Álamo & Jiménez 2006; del Álamo et al. 2006).
Here we estimate only the relevant orders of magnitude. The basic idea is that the
clusters and their wakes are linear objects advected by the mean velocity profile and
diffused by the eddy viscosity of the mean flow, νT = κuτy. The results are variable-
viscosity Orr–Sommerfeld and Squire equations for v and u, which in the former case
reduce to a simple advection–diffusion equation for the streamwise vorticity ωx when
the objects are very elongated streamwise. In that case, and assuming that the mean
velocity profile is logarithmic, an initially compact v-structure grows linearly with
time in all three directions, and moves downstream with a velocity that increases as
it grows and samples higher points in the mean profile.

We have already associated the clusters with the wall-normal velocity, so that the
self-similarity found above for the cluster dimensions is consistent with that result.
The initial perturbation from which the cluster grows is not addressed by the model,
except to assume that it is compact compared with later sizes. The v carried by the
cluster serves as the initial source for the Squire equation for u, but the ‘wake’ keeps
lengthening and diffusing even after the originating cluster has decayed. The lifetimes
of the clusters can be estimated from the frequency–wavenumber spectrum Φv of v,
as the integral time scale defined by Wills (1964),

Tv(y) =

∫ ∫
Φv(kx, kz, −kxUadv, y) dkx dkz∫ ∫ ∫

Φv(kx, kz, f, y) dkx dkz df

, (4.5)

where f is the frequency and Uadv is the advection velocity of each wave component.
They are given in figure 14(a) as functions of y. The integrals in (4.5) have been
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Figure 13. (a) Three-dimensional plot of the average velocity field conditioned to the tall
attached clusters. The black mesh is an isosurface of the p.d.f. of the vortex positions and
contains 57 % of the data. The blue volume surrounding the cluster is the isosurface 〈u′〉+ = 0.3.
The red volume downstream of the cluster is the isosurface 〈u′〉+ = − 0.1. The green volumes
are the isosurface D+

〈〉 = 10−3. The vector plots represent (〈v〉, 〈w〉) in the planes rx/yc = 10, 20.
The scale of the arrows in the downstream plane has been magnified by a factor of 1.7 to
facilitate their visualization. (b) A magnification of the surroundings of the average position
of the clusters, including a vector plot of (〈v〉, 〈w〉) in the plane x = 0. The longest arrow
measures 0.5uτ . Case L950, α ≈ 2.5αc .

performed in the wavelength bands y/2 < λx < 2h and y/4 < λz < h. According to
figures 7(a) and 7(b), these integration bands cover the sizes of the tall attached
clusters that intercept each wall distance, which are those with ∆y >y. As in those
figures, we have used the equivalence ∆y ≈ y to convert wall distances into cluster
heights.

The length of the wakes downstream of the clusters can be computed directly as
the integral length of 〈u′〉 along rz =0 and ξ = y/rx = const,

lx(ξ ) =
1

〈u′〉(0, 0, 0)

∫ L

0

〈u′(Rx, ξRx, 0)〉 dRx. (4.6)

Figure 14(b) shows the average of lx(ξ ) for the range of slopes 1/40 <ξ < 1/8, which
is representative of the downstream wake in figure 12. The slope barely affects the
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Figure 14. (a) Lifetimes T +
v of the attached clusters, computed as the integral time of v in the

wavelength bands y/2 < lx < 2h and y/4 < lz <h, and represented as functions of ∆+
y . Lines

and symbols as in table 1. The thick dotted straight line is T +
v = 40 + 0.17y+. (b) Integral

lengths l+x of the downstream wakes represented as functions of ∆+
y . � , case L180; � ,

case L550; � , case L950; the thick dotted straight line is l+x = 11(∆+
y − 40). The error bars

represent the standard deviation of lx induced by its dependence on the inclination of the rays
on which it is computed. The vertical arrow represents the size, ∆+

y = 500, of the typical tall
attached cluster in the logarithmic region which is mentioned in the text. The threshold used
in (3.1) is α ≈ 2.5αc .

integral lengths, as shown by the reasonably small error bars in the figure, which
represent the r.m.s. of lx obtained by assuming a uniform distribution of ξ in the
above range. The only large error bar, at the last data point of the figure, is due to
the small number of clusters extracted for the corresponding band of ∆y . The data in
figure 14(b) come from the experiments L180, L550 and L950, but S950 and S1900
have been excluded because their small numerical boxes interfere with the longest
wakes. The upper bound of integration in (4.6), L = 50, does not affect the integral
length, as has been checked by comparing the results with those obtained for L =30
and 40.

Consider a typical tall attached cluster with ∆+
y =500. Figures 14(a) and 14(b)

show that its lifetime is T +
v ≈ 125 and that the length of its downstream wake is

l+x ≈ 5000. For this wake to develop from the difference �U between the mean profile
and the advection velocity of the cluster, we would require that �U+ ≈ l+x /T +

v ≈ 40.
Similar velocity differences are required to explain the downstream wakes for the
range of ∆y in figures 14(a) and 14(b). Even if these are only estimations, such
high velocity differences are not available away from the wall. In the logarithmic
region, for example, �U+ ≈ U+(y)−U+(yc) ≈ κ−1 log(y/yc), and �U+ = O(40) implies
y/yc = O(107). Invoking self induction to slow the clusters with respect to the mean
profile does not help. Even without considering the advection velocities of individual
clusters, it is clear from figure 12 that any self-induced velocity would be O(uτ ) at
most.

Notice, on the other hand, that there are large velocity differences between the
logarithmic layer and the wall region, which can result in longer upstream wakes.
One of the results of the detailed analysis in del Álamo et al. (2006) is that the wakes
grow to be much longer upstream of the cluster and near the wall than downstream
and far from the wall. Those upstream wakes are compatible with the ‘tails’ found to
the left of the cluster in figures 12 and 13.
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This raises the question of what are the long downstream structures in the condi-
tional statistics. The most plausible answer is that they are the upstream wakes of other
larger clusters, aligned in the streamwise direction with those used for the conditioning,
and that the latter are a consequence, rather than a cause of the downstream structure.

The clusters would then form groups of several members, with the larger individuals
in front of the smaller ones. In this interpretation, the downstream wakes of figures 12
and 13 are long because they have been generated over long times upstream of taller
clusters located even farther downstream. The averaged vortex pair in the far right
of figure 13 would be a smeared version of the green vortices surrounding the
conditioning cluster. Note that if every small cluster grew in this way to become
large, the number of clusters of all dimensions should be roughly the same, contrary
to the results in figure 10. This implies that most clusters disappear before they reach
the upper logarithmic layer, either through decay or through merging with other
clusters. Merging sets an upper limit to the number of surviving clusters, since it
would occur as soon as the clusters begin to fill a volume fraction of order unity.
This in turn implies that the percolation mechanism discussed in § 3 is not just a
representation artefact, but a physically relevant process.

Figure 14(a) shows that Tv increases linearly with ∆y , suggesting that the larger
clusters are also older and that newborn individuals appear near the upstream edge
of each cluster group. The inverse of the slope of Tv with respect to ∆y is the vertical
velocity required to transport the clusters from the buffer layer into the outer region.
The data indicate that sustained vertical growth velocities v+ ≈ 6 would be required,
which are too large for a quantity whose r.m.s. value is (v2)1/2+ ≈ 1. This suggests
that at least some of the largest clusters are born away from the wall, either through
a local instability or, as mentioned above, through the merging of smaller ones. The
clusters grow self-similarly after that according to their sizes, not necessarily according
to their ages, consistent with diffusion by an eddy viscosity that increases linearly
with y. The linear relation between lx and ∆y in figure 14(b) also suggests that the
organization of the wakes associated to the cluster groups is self-similar.

Figure 15(a) displays contours of 〈u′〉/|〈u′〉(rx, ry, 0)|, taken at different wall dis-
tances and plotted as functions of rx/y and rz/y. This representation eliminates the
effect of the variation with rx of the wake intensity. For clarity, figure 15(a) shows
a single isovalue, but similar results are obtained for any level corresponding with
the interior of the low-u wake. The collapse of the curves around a single parabola
suggests that the overall shape of the wakes is a cone tangent to the wall, with its
vertex slightly upstream of the conditioning cluster. This is reminiscent of Townsend’s
(1976, p. 157) conical eddy, and consistent with figure 13.

The angle γ formed by the intersection of the cone with the plane rz = 0 can be
obtained from the position of the common vertex of the parabolas in figure 15(a),
rx/y ≈ 7, and is roughly equal to 8◦. When this angle is reduced to an intersection with
the (x, z)-plane, it results in the parabola drawn as a dashed line in figure 15(a). The
agreement between this parabola and the conditional data implies that the average
conical eddies are roughly circular. Those angles agree with the inclination of the
two-point correlation function of u reported by previous investigators. For example,
Krogstad & Antonia (1994) found correlation angles of 10◦ in a turbulent boundary
layer at Reθ = 6030 and Liu, Adrian & Hanratty (2001) obtained 6◦–8◦ in channels
at Reτ = 315–1414. Österlund (1999) measured inclinations that increase from 7◦ near
the wall up to 18◦ in the outer layer of an Reθ = 9700 boundary layer.

If we assume that all the clusters inside each wake follow the self-similar scalings
(4.1), it is possible to estimate the average number of clusters that are present in each
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Figure 15. (a) Contours of the conditional streamwise perturbation velocity 〈u′〉 in the wall-
parallel plane. The data are normalized with the value of 〈u′〉 at rz = 0, and have been repre-
sented as functions of rx/y and rz/y. The value represented is 〈u′〉/|〈u′(rx, y, 0)〉| = −0.33. · · ·,
Reτ = 550; , Reτ = 950. The curves come from different values of y as indicated by the
markers. �, y = 0.92yc; �, y = 1.3yc; �, y =1.6yc; �, y = 1.9yc; �, y = 2.3yc; �, y = 2.6yc; �,
y =2.9yc . The dashed curve is the parabola r2

z =(rx/7 − y)y. The threshold used in (3.1) is

α ≈ 2.5αc . (b) Two-dimensional spectral densities φ2D as functions of the wavelengths λx/y
and λz/y. The line contours are φ2D+

u =0.1 and each of them comes from a different wall
distance. �, y+ = 100; �, y+ = 200; �, y+ = 300. The shaded contours are φ2D+

v = 0.01( × 3)0.1,
at y+ = 200. Case L950. , λz = 2(λxy/7)1/2. The × marks the sizes of the tall attached
clusters in (4.1), using the equivalence ∆ = λ and yc = y/2.

wake from the inclination angle γ . Consider for simplicity a cluster centred at unit
wall distance and a second one that is p times larger, centred at a wall distance p.
According to (4.1), the streamwise separation between the two objects should be at
least 3 + 3p for them to be detected as different, and hence the wall-normal distance
between their centres should satisfy

p − 1 � (3 + 3p) tan γ. (4.7)

The minimum solution to this inequality for the value of γ given above, p = 2.5, is
the ratio of the sizes of adjacent clusters when they are packed most tightly inside
the cone. It fixes the maximum number of clusters per wake, Nmax. Assuming that the
smallest cluster has ∆+

y = 100 and the largest one has ∆+
y =2Reτ , we obtain

Nmax = log(Reτ /50)/ log(p), which varies from 1.4 to 4.0 for 180 <Reτ < 1900. This
number increases very weakly with the Reynolds number, reaching Nmax = 10 only
when Reτ > 5 × 105.

The intersection of the conical u′ structures with (x, y)-planes is also reminiscent of
the low-u ramps observed in two-dimensional sections of laboratory boundary layers
by Adrian et al. (2000), and in channels by Christensen & Adrian (2001). Those
authors reported that the ramps are associated with trains of spanwise sections of
vortices. Adrian et al. (2000) proposed that those trains are the heads of self-propelled
hairpin vortices flanking the ramps, whose joint combined induction against the mean
stream generates the low-u regions. Our results are much less organized, and suggest an
alternative picture, in which the tall attached clusters are distributed along the ramps
with increasing streamwise separations rather than flanking them continuously. The
clusters are associated to compact wall-normal motions that generate u fluctuations by
stirring the mean shear, and the fluctuations spread owing to the action of incoherent
background turbulence instead of by the coherent induction of the cluster vortices.
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Other more mechanistic explanations are possible; for example, Hutchins,
Ganapathisubramani & Marusic (2004) documented the meandering of instantaneous
u-structures, and Tomkins & Adrian (2003) showed that individual buffer-layer streaks
merge with each other. There is no doubt that all these effects are present, as well
as possibly many others, but we believe that the simplest way to summarize all the
random events that influence the spreading of a particular structure is diffusion by
the background turbulent fluctuations, which can be modelled approximately by the
variable eddy viscosity mentioned above. Del Álamo et al. (2004) have shown that
such an approximation could describe the scaling of the two-dimensional spectrum
of the streamwise velocity.

If we define the wake of a cluster as extending from 0 < rx/∆y < 12, −1 <rz/∆y < 1
and 0 <y/∆y < 2, based on the integral lengths and aspect ratios given above, the
wakes of the maximal set of tall attached clusters defined by α ≈ αc fill the channel
almost completely. When the intersections between wakes are counted, they cover
from 9.8 to 19.8 times the volume of the channel, meaning that each point belongs
on average to several wakes, and that smaller wakes live within larger ones. It
also suggests that the dynamics of the wakes are roughly linear, because they can
be superimposed without affecting each other substantially. The observations by
Meinhart & Adrian (1995) and by Adrian et al. (2000) of nested uniform-u ramps in
instantaneous (x, y)-planes of boundary layers agree with these results.

The large volume fractions occupied by the wakes imply that these structures have
to contribute substantially to the Reynolds stresses, and that they should affect the
scaling of the energy spectrum across the channel. In the wall-parallel plane, the
square-root spreading of the average velocity field conditioned to the tall attached
clusters agrees with that of the two-dimensional energy spectral density, φ2D . This
is observed in figure 15(b), which displays φ2D

u and φ2D
v in the logarithmic region of

case L950. The location of the maximum of φ2D
v in figure 15(b) coincides roughly

with the cross that marks the mean size of the clusters, but there are important
contributions to the energy spectral densities at larger scales, consistent with the
long wakes in figures 12 and 13. Those contributions are organized along the dashed
straight line that represents the square-root spreading of the conditional averages
in figure 15(a). This agrees with the results in figure 15(a) for the spreading of the
conditional structures, but it extends them to the much longer lengths available from
the spectra.

The conical shape of the downstream mean velocity field implies that the mechanism
of cluster formation has to be self-similar and relatively well organized, with clusters
of height ∆y forming in parts of the wakes which have transverse dimensions of the
same order. Otherwise the downstream mean flow field, which is conditioned on the
existence of a cluster at rx = 0 and which is scaled with the height of that cluster,
would quickly lose coherence.

The general picture that develops is one of compact v-structures, tagged here by the
presence of vorticity clusters, with lives which are proportional to their sizes, created
by some instability process in the upstream wakes left by still larger clusters in front
of them. The clusters thus created grow themselves and leave new wakes that give
rise to new clusters behind them. This mechanism is reminiscent of the vortex-streak
regeneration cycle of the buffer layer, although it now involves the more complex
structures in the logarithmic region. This continuous creation of new clusters at all
heights, not necessarily at the wall, is consistent with the observation that, even if the
intensity of the clusters must decay as they grow in size, the observed r.m.s. intensities
of the clusters are independent of their sizes.
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Figure 16. Probability density functions of the logarithms of the size ∆ of the detached clus-
ters, and of the wall distances yc of their centres. Lines and symbols as in table 1, α ≈ 2.5αc .
The iso-probability contours contain 75 % of the data; the shaded contours are φω and
represent 1/3 and 2/3 of its maximum value; we have used the correspondence λ≈ ∆ and
yc ≈ y; (a) p(log(∆x), log(yc)) and φω(λx, y); (b) p(log(∆z), log(yc)) and φω(λz, y). The dashed
curves on the ridges of the p.d.f.s are ∆ = 20η, and the solid ones are ∆x = 6yc and ∆z = 3yc .

There is, moreover, no shortage of candidate wake instabilities to act as possible
generators for the clusters. The most obvious one is a Kelvin–Helmholtz instability
of the fairly sharp velocity gradient bounding the wake from above, although much
more work is required to either confirm or negate this possibility.

4.3. Detached clusters

The scaling of the detached clusters in the present channels differs significantly from
that of the tall attached ones. This can be observed in figures 16(a) and 16(b), which
display the p.d.f.s of their sizes in the wall-parallel plane and of the wall distance of
their centres, similar to figures 7(a) and 7(b). The p.d.f.s peak approximately along the
dashed line that corresponds to ∆ =20η(yc), indicating that the sizes of the detached
clusters are proportional to the Kolmogorov scale. Similar results are obtained for
the p.d.f.s of ∆y and yc, not shown.

The detached clusters are much smaller than the tall attached ones, which are
represented by the solid straight lines in figures 16(a) and 16(b). They are also smaller
than yc, which suggests that the equivalence y = yc is approximately correct for them.
That equivalence, together with λ=∆, has been used in figures 16(a) and 16(b) to
compare the p.d.f.s with the spectral enstrophy densities, φω(λ, y), from case S1900.
Both magnitudes agree reasonably well, suggesting that the enstrophy, and hence
the energy dissipation, is organized in the form of detached vortex clusters above
the near-wall region. This result supports the ideas of Perry & Chong (1982), who
noted that wall attached eddies alone could not explain the inertial and dissipation
ranges of the spectrum. The factor of 20 that multiplies η in the data of figures 16(a)
and 16(b) is consistent with Frisch (1995), who noted that, in experimental isotropic
turbulence, viscosity becomes important for scales smaller than 30η.

The detached vortices are distributed preferably inside the low-u wakes, as can be
deduced from the relative location of the 〈u′〉 contours and the p.d.f.s of the vortex
positions in figures 17(a) and 17(b). These figures are analogous to figure 12, and
display the average velocity field conditioned to the detached clusters in the plane
rz = 0. The statistics in figure 17(a) are dominated by the large number of detached
clusters that are found far from the wall (see figure 5), and the clusters appear
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Figure 17. Quiver plots of the average perturbation velocity conditioned to the presence of
each detached cluster, represented as functions of rx/yc and ry/yc . The plane shown is rz = 0.
The shaded patches are the p.d.f.s of the position of the vortex cores and contain 50 % and
75 % of the data. The arrows in the two plots have the same scale as those in figure 12 and
the longest one (in b) is 1.1uτ . The thick solid contours are 〈u′〉+ = −0.4, −0.2. Case L950,
α ≈ 2.5αc . All the clusters are considered in (a), but only those with y+

min < 150 are considered
in (b).

at the top-downstream end of the wakes. However, when we consider only those
clusters below y+ = 150, as in figure 17(b), their location inside the wake is more
centred. These results agree with Tanahashi et al. (2003, 2004), who reported that
the maximum of the conditional p.d.f. of u′ for Q > 0 is negative in channels up to
Reτ = 800. Figure 13 suggests an explanation for this behaviour. The interior of the
wake is formed by fluid that has been pumped up from the vicinity of the wall, which
carries vortices that were formed close to the wall, where the turbulence is stronger.
This is consistent with Kang, Tanahashi & Miyauchi (2004), who showed that in the
channels of Tanahashi et al. (2003, 2004), the vortices that reside in low-u structures
are stronger than those in high-u ones.

5. Conclusions
We have analysed the vortex clusters found in numerical turbulent channels at

friction Reynolds numbers 180<Reτ < 1900. The clusters are defined as groups of
adjacent points where the discriminant of the velocity gradient tensor is larger than a
certain fraction of its r.m.s. value in the wall-parallel plane, and we have introduced
a way to define this fraction in terms of the percolation properties of the vortices.
We have shown that the use of this non-uniform threshold offers one solution to
the identification problems related to the inhomogeneity of the flow, and that the
local properties of the extracted vortices are similar to those of the intense worms of
isotropic turbulence (Jiménez & Wray 1998).

We have seen that the logarithmic region is populated by two classes of clusters.
One of them consists of small vortex packets that are detached from the wall and
which are roughly homogeneous and isotropic. The other one is formed by tall clusters
rooted in the near-wall region below y+ ≈ 20.

The tall attached clusters are linked to velocity structures which are more intense
than their background, which is probably why their constituent vortices percolate
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locally and reach the near-wall region. On average, the velocity eddies associated with
these objects consist of a wall-normal ejection surrounded by two inclined counter-
rotating vortices. Although this average structure is consistent with a single large-scale
vortex loop, most of the individual clusters are more complex. This is especially true
for the larger ones, which have relatively high internal Reynolds numbers.

When each tall attached cluster is inscribed into a parallelepipedal box aligned to the
Cartesian grid, the boxes are self-similar, with dimensions ∆x ≈ 3∆y and ∆z ≈ 1.5∆y .
These are also the dimensions of the structures with signatures of hairpin packets
extracted in laboratory experiments at comparable Reynolds numbers (Nakagawa &
Nezu 1981; Ganapathisubramani et al. 2003; Tomkins & Adrian 2003).

We have probed the influence of the tall attached clusters on the outer region by
analysing their density per unit height and per unit wall-parallel area, ns(∆y). We
have seen that this influence is independent of Reτ if ns goes approximately as ∆−3

y ,
and that it decreases with the Reynolds number if ns decays faster. In our channels,
the decay exponent of ns increases with decreasing identification threshold α, and
reaches −3 when α is lowered sufficiently. The corresponding cluster set contains
an important fraction of the transverse Reynolds stresses at all wall distances. If
α is lowered further, the decay exponent does not increase any more owing to the
percolation of the whole vortex population. Interestingly, Townsend (1976, p. 154)
already assumed implicitly that ns ∼ ∆−3

y in his attached-eddy model, but, to our
knowledge, that decay exponent had not been documented before.

The conditionally averaged flow downstream of the tall attached clusters shows
large structures of low u that can be modelled as wakes spreading self-similarly under
an eddy viscosity νT ≈ κuτy. These wakes spread linearly in their (x, y)-bisecting
plane, similar to the ramps reported by Adrian et al. (2000) and Christensen &
Adrian (2001), and as x1/2 in wall-parallel planes, in agreement with the scaling of
the two-dimensional energy spectrum in the logarithmic region (del Álamo et al.
2004). We have shown that this behaviour is consistent with a cone tangent to the
wall along the x-axis, similar to Townsend’s (1976, p. 157) conical eddy. The wakes
cover the whole volume of our experiments, and hence contribute substantially to the
streamwise Reynolds stresses.

We have estimated the lifetimes of the tall attached clusters by measuring the decay
in the frequency-wavenumber spectrum of the wall-normal velocity. The length of
the associated wakes has been measured from the integral length of the conditionally
averaged streamwise velocity field. The results indicate first that the clusters are too
short-lived to have grown from the wall to their observed heights, and second that
the conditional wakes downstream of the clusters are too long to have been created
by the conditioning cluster. From them we conclude that the conditioning cluster can
only be a consequence of the presence of the downstream wake, while the shorter
upstream wake may have formed from the cluster.

Owing to the observed self-similarity, the downstream wake must actually cor-
respond to the structure upstream of other, larger clusters in front of the condition-
ing one. The signatures of these forward clusters appear as a pair of weak counter-
rotating vortices in the conditional field. Assuming that the clusters in a given wake
follow the self-similar size relation given above, we have shown that the number
of clusters per wake grows logarithmically with the Reτ and remains relatively
small.

This leads to a description in which clusters are repeatedly started by wakes left
by still larger clusters in front of them. We have noted that the mechanism may be
as simple as a Kelvin–Helmholtz instability of the shear layer surrounding the wake.
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This picture is similar to the turbulence regeneration cycle of the buffer layer, but
it is less organized because it involves flow structures that are turbulent themselves,
such as the clusters and the wakes.

From a kinematic point of view, it is practically impossible to distinguish between
the models based on hairpin packets of Head & Bandyopadhyay (1981) and of
Adrian et al. (2000), and the wake model presented here. The discussion essentially
boils down to whether the vorticity is considered to be the derivative of the velocity,
or whether the velocity is seen as the integral of vorticity. However, the wake model
provides a simple dynamical mechanism by which the diffusion of perturbations to
the mean shear by the background turbulence generates self-similar conical velocity
structures. We personally find it difficult to explain how the dynamics of systems of
discrete vortices may lead to self-similarity.

The cluster-wake pairs need not be exclusive to turbulent flows over smooth walls.
Flores & Jiménez (2004) showed that the energy spectra in the outer region of
turbulent channels with modified boundary conditions that inhibit the formation
of a buffer layer are also consistent with the existence of these structures. The only
macroscopic feature that those flows share with smooth-walled ones is the existence of
a mean shear, which suggests that the clusters and the wakes are direct consequences
of it. Although it cannot be ruled out that some near-wall ejections may occasionally
be started by top-down interactions of the kind postulated by Hunt & Morrison
(2000), both the concentration of clusters near the walls and the location of the large
velocity scales in the lee of the clusters suggest that this mechanism is not the primary
one controlling near-wall dynamics.

The overall picture presented in this paper describes the structures that take part
in the self-similar range of the turbulent logarithmic region. To our knowledge, this
is the first time that the organization of a turbulent self-similar range has been
characterized at this level, not only for the case of wall flows, but also for turbulent
flows in general.
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del Álamo, J. C., Flores, O., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 The linear dynamics
of the turbulent logarithmic region. In preparation.

Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in
turbulent channel flow. J. Fluid Mech. 310, 269–292.

Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 Relationships between local vortex
identification schemes. J. Fluid Mech. 535, 189–214.

Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional
flow fields. Phys. Fluids A 2, 765–777.

Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence
structures of wall-bounded flows using DNS data. J. Fluid Mech. 357, 225–247.

Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall
turbulence. J. Fluid Mech. 431, 433–443.

Cucitore, R., Quadrio, M. & Baron, A. 1999 On the effectiveness and limitations of local criteria
for the identification of a vortex. Eur. J. Mech. B/Fluids 18, 261–282.
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